Carnegie Mellon University

Heinz

95-865 Australia Lecture 5:
Introduction to Predictive Data
Analytics, Neural Nets, and Deep
Learning

George Chen



Announcements

 No the quiz hasn’t been graded yet

* Please make sure you have AWS set up with AWS Educate
credits (bug Erick)

* Python 3.7 currently has some compatibility issues with
Keras and Tensorflow — please downgrade your Python to
version 3.6 if you’re using 3.7l

conda install python=3.6

conda install keras



Disclaimer: unfortunately “k”
means many things



Previous Lecture: Topic Modeling

* There are actually many topic models, not just LDA

* (Correlated topic models, Pachinko allocation,
biterm topic models, anchor word topic models, ...

* Dynamic topic models: tracks how topics change over time

e [his sort of iIdea could be used to figure out how user
tastes change over time in a recommendation system

e Could try to see if there are existing patterns for how
certain topics become really popular



What if we have labels?
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Example: MNIST handwritten digits have known labels



If the l[abels are known...



If the l[abels are known...

And we assume data generated by GMM...
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cluster means, covariances



Flashback: Learning a GMM

Don t need thls top part n‘ We knovv the Ialoels|

" p ICkk

| Step 1: Pick quesses for cluster means and cevariances

i Repeat until convergenoe -

Step 2: ute probability of each point belongm a.each of the
. ke sters .}

Step 3 Update cluster means and covariances Carefully
accounting for probabilities of each point belonging to each of the
clusters

We don’t need to repeat until convergence



If the l[abels are known...

And we assume data generated by GMM...
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What should the label of
this new point be”

Whichever cluster has
higher probabillity!



We |ust created a classifier

(a procedure that given a new data

DECISIon boundary \ - it tells us what “class” it belongs to)
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® What should the label of

this new point be”

Whichever cluster has
higher probabllity!

This classifier we’ve created assumes a
generative model



You’ve seen generative
models before for prediction

Linear regression!



y Model parameters: slope m, intercept b

Label
(1D In this case)

V X
® ® Feature vector

(1D in this case)



y Model parameters: slope m, intercept b
Label

(1D in this case)

A‘
X
' Feature vector

(1D in this case)

For specific value of x,
assume y drawn from
Gaussian with mean
mx+b, standard dev o



Predictive Data Analysis

Training data

(x1, y1), (X2, y2), ..., Xn, ¥n)

Goal: Given new feature vector x, predict label y

* yis discrete (such as colors and blue)
=> prediction method is called a classifier

* yis continuous (such as a real number)
=> prediction method is called a regressor

A giant zoo of methods



Generative Models

e Hypothesize a specific way In which data are generated
o After learning a generative model:
 \We can generate new synthetic data from the model

o Usually generative models are probabilistic and we can
evaluate probabillities for a new data point

e |n contrast to generative models, there are discriminative
methods that just care albout learning a prediction rule



Example of a Discriminative
Method: k-NN Classification



Example: k-NN Classification
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Example: k-NN Classification

O ./. 1-NN classifier prediction

®
®

® What should the label of
® o

O this new point be?



Example: k-NN Classification

e o0 ®
® pReakte @ ®
® 2-NN classifier prediction

O
® O
What should the label of
® o

O this new point be?



Example: k-NN Classification

® 3-NN classifier prediction

O
© O
° What should the label of
O O this new point be?
O Wejustsaw: k=1, k=2, k=3

What happens if k = n?



How do we choose k?

What I'll describe next can be used to select
nyperparameter(s) for any prediction method

First: How do we assess how good a prediction method is?



Hyperparameters vs. Parameters

e \We fit a model’s parameter to training data
(terminology: we “learn” the parameters)

* \We pick values of hyperparameters and they do not get fit
to training data

e Example: Gaussian mixture model
e Hyperparameter: number of clusters k
e Parameters: cluster probabilities, means, covariances

e Example: k-NN classification

* Hyperparameter: number of nearest neighbors k
* Parameters: N/A



Training data

Training Training
data data

| int
Training point POl

data
point

Training
data

Training data Training
data point dalta
point point

= Training
franing W data | Training
data oint
P data

point point

Example: Each data point is an emall
and we know whether it is spam/ham

Want to classify
these points
correctly

Test data
lestdatal point

olellpli

Test data fest Qata
poINt

point

Test data
point

Example: future
emails to classify
as spam/ham



Predicted labels

Training Training Training Training Training
data data data data data
point olellgli point olellpli olellgli

Training Training Training Training Training

data data data data data
olellpli point point point point
Train method on data in gray Predict on data
IN orange
Compute

prediction error

50%



Training Training Training Training Training
data data data data data
point olellgli point olellpli point

Training Training Training Training Training

data data data data data
olellpli point point point point
Train method on data in gray Predict on data
IN orange
Compute

prediction error

0% 50%



Training Training Training Training Training
data data data data data
point olellgli point olellpli point

Training Training Training Training Training

data data data data data
olellpli point point point point
Train method on data in gray Predict on data
IN orange
Compute

prediction error

50% 0% 50%



Training Training Training Training Training
data data data data data
point olellgli point olellpli point

Training Training Training Training Training

data data data data data
olellpli point point point point
Train method on data in gray Predict on data
IN orange
Compute

prediction error

0% 50% 0% 50%



Training Training Training Training Training
data data data data data
point olellgli point olellpli point

Training Training Training Training Training

data data data data data
olellpli point point point point
Train method on data in gray Predict on data
IN orange
Compute

prediction error

0% 0% 50% 0% 50%
Average error: (0+0+50+0+50)/5 = 20%



Training
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data
point

Training
data
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1. Shuffle data and put them into “folds” (5 folds in t

2. For each fold (which consists of its own train/valic

Nis example)

ation sets):

(@) Train on fold’s training data, test on fold’s validation data
(o) Compute prediction error

3. Compute average prediction error across the folds



Nnot the same k as In k-means or k-NN classification

k-fold Cross Validation

Training
data
point

Training
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Training
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1. Shuffle data and put them into “folds” (k=5 folds in this example)

2. For each fold (which consists of its own train/validation sets):
(@) Train on fold’s training data, test on fold’s validation data
(o) Compute prediction error

3. Compute average prediction error across the folds



Nnot the same k as In k-means or k-NN classification

k-fold Cross Validation

Training
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Training
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Training
data
point
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1. Shuffle data and put them into “folds” (k=5 folds in this example)

2. For each fold (which consists of its own train/validation sets):
(@) Train on fold’s training data, test on fold’s validation data
(lb) Compute some sort of prediction score

3. Compute average prediction score across the folds
“cross validation score”



Choosing k in k-NN Classification

Note: k-NN classifier has a single hyperparameter k
Foreach k=1, 2, 3, ..., the maximum k you are willing to try:

Compute 5-fold cross validation score using k-NN classifier
as prediction method

Use whichever k has the best cross validation score



Automatic Hyperparameter Selection

Suppose the prediction algorithm you’re using has
hyperparameters 6
For each hyperparameter setting 8 you are willing to try:

Compute B-fold cross validation score using your algorithm
with hyperparameters 6

Use whichever 8 has the best cross validation score



Important: the cross validation score is
trying to predict what the prediction
quality will be on the unseen test data

Our earlier example had a cross validation
score of 20% error

This is a guess at how well the prediction
method should perform on test data

This guess is not always accurate

Want to classify
these points
correctly

Test data
lestdatal point

point

Test data Test plata
poINt

olellgli

Test data

point

Example: future
emalils to classify
as spam/ham



Different Ways to Measure Accuracy

Simplest way:

e Raw error rate: fraction of predicted labels that are wrong
(this was in our cross validation example earlier)

In “binary” classification (there are 2 labels such as spam/ham)
when 1 label is considered “positive” and the other “negative”

* Precision: among data points predicted to be “positive”,
what fraction of these predictions is correct”

 Recall: among data points that are actually “positive”, what
fraction of these points is predicted correctly as “positive”™?
(also called true positive rate)

* F1 score: 2 X precision X recall

precision + recall



Prediction and Model Validation

Demo



Decision Trees



Example Made-Up Data

. Red: diabetic
Weight (Ib) 4 Blue: not diabetic
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Example Decision Tree

( )
Age > 407
gle ; :yes
([ ) é )
Age > 307 Weight > 2007
gle ; :yes gle ; :yes
NOot NOt

diabetic diabetic



Learning a Decision Tree

e Many ways: general approach actually looks a lot like
divisive clustering but accounts for label information

e |’ll show one way (that nobody actually uses in practice) but
it’s easy to explain



Learning a Decision Tree

1. Pick a random feature

-------------

i'We'rght-eb)-ix- (eitherage orweight) .. ... Red:-diabetic--- - -
SRS ' ® Blue: not diabetic
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2. FInd threshold for which red and blue are as “separate as
possible” (on one side, mostly red; on other side, mostly blue)



Learning a Decision Tree

Within each side, recurse until a
Weight (Ib) termination criterion is reached! Red: diabetic

20 30 40 50 Age (years)
Example termination criteria: =90% points within region has same label,
number of points within region is <5




Decision Tree Learned

' Weight > 2107 '

Weight > 1457 | Age >357 |
\E/es no l lyes

‘not. Age > 397 ‘not.
diabetic diabetic
Age > 297 not
diabetic
not diabetic

For a new person with feature vector (age, weight), easy to predict!



Decision Forest for Classification

e Typically, a decision tree is learned with randomness
(e.g., we randomly chose which feature to threshold)

-> by re-running the same learning procedure, we can get
different decision trees that make different predictions!

e [Oor a more stable prediction, use many decision trees

New test data point

/ |

(Tree 1 (Tree 2) (Tree 3) Tree TJ
' ! ! '

NOT
diabetic
Final prediction: majority vote of the different trees’ predictions




— Randomly sample Randomizing training data

data n points (bootstrap aggregating)
points
\ ew test data pom\'
[Tree 1 %r?e 2) (Tree 3) Tree TJ
diabetic Not diabetic diabetic
diabetic

Question: What happens if all the trees are the same?
Adding randomness can make trees more different!

e Random Forest: in addition to randomly choosing features
to threshold, also randomize training data used for each tree

 Extremely randomized trees: further randomize thresholds
rather than trying to pick clever thresholds



Back to the demo



Neural Nets and Deep
Learning



IM&AGENET

Over 10 million images, 1000 object classes

2011: Traditional computer vision achieves accuracy ~74%

2012: Initial deep neura
2015 onwards: Deep

network approach accuracy ~84%
earning achieves accuracy 96%+

Russakovsky et al. ImageNet Large Scale Visual Recognition Challenge. 1JCV 2015,



'---

. » Top computer vision conferences (CVPR, IGCV, ECCV) are

o m =

Deep Learning Takeover

now nearly all about deep learning

e [op machine learning conferences (ICML, NeurlPS) have
. heavily been taken over by deep learning

Heavily dominated by industry novv'

Extremely useful in practice: GGo g|e

Near human level image classification

(including handwritten digit recognition) facebook
Near human level speech recognition amazon
Improvements in machine translation, text-to-speech

Self-driving cars
Better than humans at playing Go



Google DeepMin
e _

d’s_ AlphaGo vs Lee Sedol, 2016 -~



Is it all hype?
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panda adversarial gibbon
~58% confidence NoIse ~99% confidence

Source: Goodfellow, Shlens, and Szegedy. Explaining and Harnessing Adversarial Examples.
ICLR 2015.



Source: Papernot et al. Practical Black-Box Attacks against Machine Learning. Asia
Conference on Computer and Communications Security 2017,



Fooling Neural Networks in the Physical
World with 3D Adversarial Objects

31 Oct 2017 - 3 min read — shared on Hacker News, Lobsters, Reddit, Twitter

We've developed an approach to generate 3D adversarial objects that reliably fool neural
networks in the real world, no matter how the objects are looked at.
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Neural network based classifiers reach near-human performance in many tasks, and
they’re used in high risk, real world systems. Yet, these same neural networks are
particularly vulnerable to adversarial examples, carefully perturbed inputs that cause

Source: labsix



Source: Gizmodo article “This Neural Network's Hilariously Bad Image Descriptions Are Still
Advanced Al". September 16, 2015. (They're using the NeuralTalk image-to-caption software.)



Slightly modifying an image results in different prediction results

Source: Quanta Magazine article "“Machine Leaming Confronts the Elephant in the Room”,
September 20, 2018.



Slightly modifying an image results in different prediction results

Source: Quanta Magazine article "“Machine Leaming Confronts the Elephant in the Room”,
September 20, 2018.



Another Al Winter?

~1970’s: First Al winter over symbolic Al

~1980’s: Second Al winter over “expert systems”

Every time: Lots of hype, explosion in funding, then bubble bursts



a5
About membership Bjedlum Sign in ‘ Get started

emm. Michael Jardan

" Michael I. Jordan is a Professor in the Department of Electrical Enginearing and Computer Sciences
' and tha Department of Statistics at UC Barkelay.

" Apr18 - 16 min read
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Photo credit: Pcg Skorpinski

Artificial Intelligence—The Revolution
Hasn't Happened Yet

Artificial Intelligence (AT) is the mantra of the current era. The phrase is

intoned by technologists, academicians, journalists and venture capitalists

https://medium.com/@mijordan3/artificial-intelligence-the-revolution-hasnt-happened-
yet-be1dd812e1er



MAtlantic Popular Latest  Sections v Magazine v  More v Q

TECHNOLOGY

How a Pioneer of Machine
Learning Became One of Its
Sharpest Critics

Judea Pearl helped artificial intelligence gain a strong grasp
on probability, but laments that it still can't compute cause
and effect.

KEVIN HARTNETT AND QUANTA MAY 19, 2013

https://www.theatlantic.com/technology/archive/2018/05/machine-learming-is-stuck-on-asking-why/
5606 75/7single_page=true



What is deep learning?



Classification
units
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Slide by Phillip Isola Serre, 2014



Basic ldea

Brain/Machine | — “clown fish”

Slide by Phillip Isola



Object Recognition

Edges
\ Segments \
Texture “clown fish’
Parts /
Colors /
Feature extractors Classifier

Slide by Phillip Isola



Object Recognition

L earned
Edges
\ Segments
Texture “clown fish’
Parts
Colors /
Feature extractors Classifier

Slide by Phillip Isola



Neural Network

L earned

“clown fish”

Slide by Phillip Isola



Neural Network

L earned

“clown fish”

Slide by Phillip Isola



Deep Neural Network

L earned

“clown fish”

Slide by Phillip Isola



Crumpled Paper Analogy

\\M

. Dbinary CIaSS|flcat|on. 2 crumpled
sheets of papereekresponding tosthe

different €lagsses =
m .

deep learning: series (flayers”) of
simple unfolding operations to try to
disentangle the 2 sheets

Analogy: Francois Chollet, photo: George Chen



Representation Learning

Each layer’s output is another way we could represent the input data

| earned

“clown fish”




Representation Learning

Each layer’s output is another way we could represent the input data

| earned

O

k2 “clown fish”
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Why Does Deep Learning Work?

Actually the ideas lbehind deep learning are old (~1980’s)
e Big data

amazon.com , £ lyﬂ
NETFLIX - fitbit & UPMC

IIIIIIIIIIIIIIIIIIII

e Better hardware

AMD 1

CPU’s
& Moore’s law

e Better algorithms



Structure Present in Data Matters

Neural nets aren’t doing black magic

* |mage analysis: convolutional neural networks (convnets)
neatly incorporates basic image processing structure

* Time series analysis: recurrent neural networks (RNNSs)
iIncorporates ability to rememlber and forget things over time

e Note: text Is a time series

e Note: video Is a time series



Handwritten Digit
Recognition Example

Walkthrough of building a 1-layer and then a 2-layer neural net



Handwritten Digit Recognition

atten &
treat as
D vector I weighted sums activation
> : > >
i | (parameterized (can be
! by a weight thought of
| i matrix W and as post-
28x28 Image a bias b) processing)
length 784 vector “dense” layer “dense”
(784 input neurons)  with 10 numbers layer final

output



Handwritten Digit Recognition

weighted sums
>

(parameterized (2D numpy array
Dy a weight of dimensions
matrix W and 784-by-10)
a bias (1D numpy array
W™ b with 10 entries)
length 784 vector “dense” layer

(784 input neurons)  with 10 numlbers

input dense
(1D numpy array with 784 entries) (1D numpy array with 10 entries)



Handwritten Digit Recognition

dense [0]
dense|[|l]

np.dot(input, W[:, O]) + b[O]
np.dot(input, W[:, 1]) + b[1]

/83

dense[j] = »  input[ilxW[i, j]

=0

welighted sums

(parameterized (2D numpy array + b[]]
by a weight of dimensions
matrix W and 784-by-10)
a bias (1D numpy array
W™ be with 10 entries)
1 784 vector “dense” layer

put neurons)  with 10 numbers

input dense
34 entries) (1D numpy array with 10 entries)



Handwritten Digit Recognition

weighted sums
>

(parameterized
by a weight
matrix W and
a bias b)

length 784 vector “dense” layer
(784 input neurons)  with 10 numbers



Handwritten Digit Recognition

atten &
treat as
D vector I weighted sums activation
> : > >
i | (parameterized (can be
! by a weight thought of
| i matrix W and as post-
28x28 Image a bias b) processing)
length 784 vector “dense” layer “dense”
(784 input neurons)  with 10 numbers layer final

output



Handwritten Digit Recognition

Many different activation functions possible 4 4
3.5 3.5
Example: Rectified linear unit (RelLU) 4 4
zeros out entries that are negative 1 0
0.5 Rel.U 0.5
>
2 2
(can be
-4 0
dense_final = np.maximum(®, dense)|, thought of .
as post-
2 processing) | °
) S
“dense” layer “dense”
with 10 numbers layer final
dense output

dense final



Handwritten Digit Recognition

Many different activation functions possible 4 0.17

3.5 0.10
Example: softmax turns the entries in the 4 0.17
dense layer (prior to activation) into a -1 0.00

orobability distribution (using the “softmax” o5 Softmax
transformation) >

2 0.02
y (can be 0.00
dense exp = np.exp(dense) 3 thought of 0.06
dense exp /= np.sum(dense_exp) S| &S post-
dense_final = dense_exp - processing) 0'46

“dense” layer “dense’

with 10 numbers layer final

dense output

dense final



Handwritten Digit Recognition

|
i
atten & i
treat as |
D vector I weighted sums softmax
> : > >
| (parameterized (can be
1 by aweight thought of
| 1 matrix W and as post-
28x28 Image a bias b) processing)
length 784 vector “dense” layer “dense”
(784 input neurons)  with 10 numbers layer final

output



Handwritten Digit Recognition

atten &
treat as
D vector

v

28x28 Image

dense layer with
10 neurons,
softmax activation,
parameters W, b

length 784 vector
(/84 input neurons)



Handwritten Digit Recognition

Demo part 1



Handwritten Digit Recognition

atten &
treat as
D vector

v

28x28 Image

dense layer with
10 neurons,
softmax activation,
parameters W, b

length 784 vector
(/84 input neurons)



Handwritten Digit Recognition

Training label: 6

flatten &
treat as

1D vector
>

v

> — | Loss/“error” | = error

28x28 Image

dense layer with 1

10 neurons, log Pr(digit 6)
softmax activation,
parameters W, b

length 784 vector
(784 input neurons)



Handwritten Digit Recognition

Demo part 2



Handwritten Digit Recognition

Training label: 6

flatten &
treat as

1D vector
>

v

> — | Loss/“error” | = error

28x28 Image

dense layer with 1

10 neurons, log Pr(digit 6)
softmax activation,
parameters W, b

length 784 vector
(784 input neurons)



Handwritten Digit Recognition

Training label: 6

R
l

28x28 Image

dense layer
length 784 vector with 512

(784 input neurons)
activation

v

— | Loss/“error”

dense layer with

— error

:

10 neurons, 109 Pr(digit 6)

neurons, RelLU softmax activation



Handwritten Digit Recognition

Demo part 3



